How to Choose a Good Omega-3 Supplement

You may already know how important Omega-3 fatty acid supplementation is for dogs and cats. I consider it to be the #1 most important supplement you can give your pet.

The anti-inflammatory and neurological effects of Omega-3s EPA (eicosapentanoic acid) and DHA (docosahexanoic acid) have been thoroughly researched. Omega-3 supplementation has proven to be beneficial for dogs and cats for a wide variety of conditions, including chronic kidney disease(1), arthritis(2), allergies(3), and skin and coat problems(4).

But do you know how to choose the best Omega-3 supplement for your pet? Let’s look at the main sources of Omega-3s on the market:

Flaxseed/Nut/Vegetable Oils

The vast majority of plant-based oils are in the form of Omega-6 fatty acids, which are already over-supplied in our pets’ diets. Flaxseeds and a few other seeds and nuts contain the Omega-3 alpha-linolenic acid (ALA). Many oils, foods, and treats claiming an Omega-3 benefit often contain only ALA. Now, ALA does have beneficial effects of its own, particularly for skin and coat health. However, after weaning, dogs and cats (and humans) convert less than 1-2% of it into EPA and none at all to DHA–the essential fatty acids that are so important to health. (5).

Algal Oil

Most species of algae naturally produce DHA, but not EPA. In order to obtain a better balance, some species have been genetically modified to produce more EPA.(6) However, algal oils may also contain Omega-6 fatty acids, which are undesirable because they tend to promote inflammation. While algal oil is a great choice for vegans, dogs and cats are not (and should not be) vegans, and should get their Omega-3s from an animal source.

Fish-Based Oils

Fish and cod liver oil are the most common and popular sources of EPA and DHA. However, these can be surprisingly problematic.

Most salmon oil (and all salmon products from the Atlantic Ocean, Scotland, Norway, and much of Canada) comes primarily from farm-raised salmon. These factory-farmed fish are grown in polluted, overcrowded pens (7); they are heavily vaccinated (8); fed on a  pelleted diet “similar in many ways” to dry dog food, made largely from slave labor-produced “trash fish” and/or processing waste, although plant-based proteins such as gluten meals are being substituted more and more (9,10); given dyes, antifungals, parasiticides, and antibiotics (11); and they contain up to 10 times more toxic and/or carcinolgenic mercury, dioxins, PCBs, and other toxins than wild fish (12,13). Farmed salmon also pose a serious threat to wild species in both Atlantic and Pacific oceans from interbreeding of escaped fish (14), parasites (15), and disease(16). Additionally, about 1/3 of labeled “Alaska,” “wild,” and “wild-caught” salmon are not truly wild, but bred and raised in hatcheries; their release into the ocean is threatening both wild salmon, and other fish(17). Oil from farmed fish also contain less Omega-3s and far more Omega-6s than wild fish(18).

Cod liver oil is commonly supplemented with Vitamins A and D at levels that could easily become toxic in cats and dogs (19). Moreover, a loophole in the law allows non-cod species to be labeled as cod.

Mass-produced, low-priced fish oils usually contain filler oils (such as sunflower, safflower, canola, and olive oil), which add undesirable Omega-6s, and are typically processed with harsh chemicals.

There are also oils made from other fish, such as menhaden (a threatened keystone species, and the source of most unspecified “fish oil”). Sardine, herring, and anchovy oils are, so far, more sustainable and cleaner than most other fish oils. While it’s best to use a product made specifically for pets in order to avoid the additives found in human products, many pet fish oils are quite low in potency, and may not be sufficient for your pet’s needs.

Krill Oil

Krill oil is a non-fish alternative Omega-3 product that is gaining in popularity. Krill (tiny shrimp-like crustaceans), are the keystone species and major food source for many marine animals, including fish, whales, seals, squid, and birds. Krill are utilized for oil, as well as being processed into food for farmed fish. The global biomass of krill is enormous, and krill oil promoters claim that it’s impossible to over-harvest it. On a global scale, that may be true; but the problem is that they are being harvested in and around critical feeding grounds of the animals that eat them. This is already causing local areas of depletion, threatening dozens of species of fish, seabirds, and mammals, including whales, which are already at higher risk from melting ice packs and warming sea temperatures.(20) In fact, Antarctic Adelie penguins have suffered two disastrous breeding seasons in the last four years: in 2015, not a single chick survived; in 2017, only 2 chicks (from a breeding population of 36,000 adults) survived. The babies starved to death because the waters where the parents feed were depleted of krill.(21)

Greenlip Mussel Oil

New Zealand Greenlip Mussels (GLM, species Perna canaliculus) are grown under a Sustainable Farming Program that ensures the long term viability of the greenlip mussel industry, with minimum impact on the environment. GLM are bi-valve mollusks with proven value for canine arthritis.(22) GLM provide a rich source of 33 fatty acids, of which 5 are Omega 3s (including essential Omega 3s EPA, DHA, and alpha linolenic acid). One of GLM’s unique array of Omega 3s is ETA (eicosatetraenoic acid). ETA–which is not found in any other food to any measurable degree–has extremely powerful ant-inflammatory properties, and is beneficial for the heart(23). GLM oil has less saturated fat, and more mono- and polyunsaturated fats, than fish oil or cod liver oil.

GLM oil has the following fatty acid profile:

(EPA) Eicosapentaenoic C20:5n-3: 4.7%
(DHA) Docosahexaenoic C22:6n-3: 3%
Palmitic C16:0: 14.2%
Myristic C14:0: 0.9%
Myristoleic C14:1: 0.1%
Penadecanoic C15:0: 0.1%
Hexadencenoic C16:1: 2.9%
Magaric C17:0: 0.2%
Heptadecenoic C17:1: 0.1%
Stearic C18:0: 2.5%
Oleic C18:1n-9: 52.8%
Linoleic C18:2n-6: 12.1%
Octadecadienic C18:2: 0.8%
Alpha Linolenic C18:3n-3: 1.0%
Arachidic C20:0: 0.2%
Eicosenic C20:4n-9: 0.7%
Eicosatetraenoic C20:4n-3: 0.1%
Arachidonic C20:4n-6: 0.3%
Heneicosapentaenoic C20:5n-3: 0.1%
Docosanoic C22:0: 0.1%
Docosapentaenoic C22:6n-3: 0.3%
Tetracosanoic C24:0: 0.1%

MOXXOR produces the ideal New Zealand greenlip mussel oil: it is organic; sustainably grown; humanely processed; cold-extracted; and certified to be free of mercury and other toxins and pollutants. It also contains cold-pressed, organic white grape seed husk extract and kiwifruit seed oil—these potent oils have antioxidant properties, and also serve as natural preservatives for the GLM oil.  *Click here to find out why MOXXOR grapeseed extract is completely safe for dogs and cats.

In contrast to many marine oil products, MOXXOR is cold processed. As a result, it contains a higher level of “polar” fatty acid molecules (which readily form bonds with surrounding tissues) than other oils, making MOXXOR far more bioavailable. This, as well as the absence of fillers or carrier oils, is what allows a very small GLM oil capsule to contain more antioxidant power as the larger krill oil capsules and gigantic fish oil capsules.

In order to ensure freshness, the mussels grown for MOXXOR are processed in a facility built right on the shore of the Marlborough Sound where they are grown and harvested. In addition, the other two components of MOXXOR, Sauvignon Blanc grape seed husk extract and kiwifruit seed oil provide additional antioxidant power, including all 8 members of the Vitamin E family. These ingredients also safeguard MOXXOR’s freshness and stability by scavenging the oxygen free radicals that cause rancidity.

size comparison moxxor fish oil krill

MOXXOR comes in a very small capsule, making it easy to give even to small pets. This photo shows the difference between a gigantic fish oil capsule (on the left), a krill oil capsule (center), and a capsule of MOXXOR (on the right).

Additionally, MOXXOR’s mild taste is generally well accepted, even by the fussiest of cats and dogs. In fact, some will even eat it as a treat.

I’ve heard of veterinarians who recommend fish oil recommend very high doses, even for cats–up to 1000 mg a day! Compared to fish oils, Moxxor may seem less potent. Indeed, a capsule contains only ~350 mg of EPA/DHA, compared to 1000 to 1200 mg for fish oil capsules. However, in my experience, Moxxor is far more bioavailable and biologically active. Since it contains all 18 known Omega-3s, it has benefits far beyond just EPA and DHA. There has been almost no research on any of the other 16 components, but one of them, ETA, has been shown to have far more anti-inflammatory activity than EPA. The grape seed extract and kiwi fruit seed extract also contribute powerful antioxidant activity to douse those nasty free radicals that cause so much damage to the body.

For all these reasons, I believe that MOXXOR is the ideal Omega-3 fatty acid supplement for pets (and people).

Click here to order a 30-count bottle,  and use coupon code DRJEAN to get 5% off!

Click here to order a 60-count bottle. Click the  “JOIN” link in the upper right corner to get your Preferred Customer discount. (Don’t worry, this does not obligate you to become a distributor; and you can cancel autoship at any time.)


(1) Bowden RG, Wilson RL, Deike E, et al. Fish oil supplementation lowers C-reactive protein levels independent of triglyceride reduction in patients with end-stage renal disease. Nutrition in Clinical Practice. 2009 Aug-Sep;24(4):501-12.

(2) Roush JK, Dodd CE, Fritsch DA, et al. Multicenter veterinary practice assessment of the effects ofomega-3 fatty acids on osteoarthritis in dogs. Journal of the American Veterinary Medical Association. 2010 Jan 1;236(1):59-66.

(3) Abba C, Mussa PP, Vercelli A, Raviri G. Essential fatty acids supplementation in different-stage atopic dogs fed on a controlled diet. Journal of Animal Physiology and Animal Nutrition (Berl). 2005 Apr-Jun;89(3-6):203-7.

(4) Bauer JE. Responses of dogs to dietary omega-3 fatty acids. Journal of the American Veterinary Medical Association. 2007 Dec 1;231(11):1657-1661.

(5) Boelen P, van Dijk R, Sinninghe Damsté JS, Rijpstra WIC, Buma AG. On the potential application of polar and temperate marine microalgae for EPA and DHA production. AMB Express. 2013;3:26. .

(6) Dunbar BL, Bigley KE, Bauer JE. Early and sustained enrichment of serum n-3 long chain polyunsaturated fatty acids in dogs fed a flaxseed supplemented diet. Lipids. 2010 Jan;45(1):1-10.

(7) Cole DW, Cole R, Gaydos SJ, et al. Aquaculture: Environmental, toxicological, and health issues. International Journal of Hygiene and Environmental Health. 2009 Jul;212(4):369-77.

(8) Gudding R, Lillehaug A, Evensen Ø. Recent developments in fish vaccinology. Veterinary Immunology and Immunopathology. 1999 Dec;72(1-2):203-212.

(9) Feeds for Aquaculture. National Oceanic and Atmospheric Administration.

(10) Sutton T, Sciliano A. Seafood Slavery: Human Trafficking in the International Fishing Industry. Center for American Progress. 2016 Dec 15.

(11) Done HY, Halden RU. Reconnaissance of 47 antibiotics and associated microbial risks in seafood sold in the United States. Journal of Hazardous Materials. 2015 Jan; 282:10-17.

(12) Berntssen MH, Maage A, Julshamn K, et al. Carry-over of dietary organochlorine pesticides, PCDD/Fs, PCBs, and brominated flame retardants to Atlantic salmon (Salmo salar L.) fillets. Chemosphere. 2011 Mar;83(2):95-103.

(13) Hites RA. Global Assessment of Organic Contaminants in Farmed Salmon. Science. 2004;303(5655 ):226–229.

(14) Roberge C, Normandeau E, Einum S, et al. Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Molecular Ecology. 2008 Jan;17(1):314-24.

(15) Stokstad E. Parasites from fish farms driving wild fish to extinction. Science. 2007 Dec 14;318(5857):1711.

(16) Krkošek, M., M.A. Lewis, A. Morton, L.N. Frazer, J.P. Volpe. 2006. Epizootics of wild fish induced by farm fish. Proceedings of the National Academies of Science. 103:15506-15510.

(17) Lackey RT. Restoring wild salmon to the Pacific northwest: chasing an illusion? U.S. Environmental Protection Agency. 

(18) USDA National Nutrient Database for Standard Reference, Release 25. 

(19) National Research Council. Nutrient Requirements of Dogs and Cats . Washington, DC: The National Academies Press, 2006, 194-205.

(20) Penguins die in ‘catastrophic’ Antarctic breeding season. BBC, 2017 Oct 13.

(21) Schiermeier Q. Ecologists fear Antarctic krill crisis: fishing industry threatens to destabilize stocks. Nature. 2010;467:15.

(22) Bierer TL, Bui LM. Improvement of Arthritic Signs in Dogs Fed Green-Lipped Mussel (Perna canaliculus).  Journal of Nutrition. June 1, 2002 vol. 132 no. 6 1634S-1636S.

(23) Øie E, Ueland T, Dahl CP, et al.  Fatty acid composition in chronic heart failure: low circulating levels of eicosatetraenoic acid and high levels of vaccenic acid are associated with disease severity and mortality. Journal of Internal Medicine. 2011;Sep;270(3):263-72.


This entry was posted in General. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *